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time-varying, multi-input, multi-output,distributed systems. The

classical Black formula is generalized to the nonlinear case., Achievable
advantages and limitations of feedback in nonlinear dynamical systems
are classified and r<udied in five categories: desensitization,
disturbance attenuation, linearizing effect, asymptotic tracking and

disturbance rejection, stabilization. Conditicns under which feedback is

beneficial for nonlinear dynamical systems are derived. Our results show
that if the appropriate linearized inverse return difference operator is
small, ther the nonlinear feedback system has advantages over the open-

lcop system. Several examples are provided to illustrate the results. %’
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I.  INTRODUCTION
Feedback is one of the most important engineering inventions.
Historically [1], some third century B.C water clocks may be
viewed as primitive feedback devices. Some more definite feedback
systems such as furnace temperature regulators, float regulators,
windmills, etc. were invented between the L6th and 18th century. Howecver,
it is only at the turn of the 19th century, when James Watt invented the
steam engine governor, that the concept of feedback began to be appreciated
and used by engincers. Attempts to understand and to analyze the associ-
ated stability problems brought by feedback were then made by several
ploneers, e.g. Airy, Maxwell, Lyapunov, Routh, Hurwitz, Vyschnegradskii, etc.

Up to the 1920's, feedback devices were predominantly mechanical regulators

whose primary objective was to reduce the regulated error to zero. The
need of long distance telephony in the 1920's [2] resulted in the

crucial invention of the negative feedback amplifier by H.S. Black [3,4].

Black's major invention was to conceive the benefits of feedback resulting

from a high forward-path gain: he fed the output back to the input stage;

he showed that by using a high gain In the forward path, one obtalns

an amplifier which is 1) more linear than the vacuum tubes in the forward
path, 2) insensitive to variations in the vacuum tubes in the forward
path, and 3) insensitive to noise injected at the output stage. Depend~
ing on the applications, the requirements on negative feedback amplifier .
and on mechanical regulators may be quite different. Nevertheless,
during World War II, the need of very accurate servomechanisms for
anti-aircraft defense brought them together., It is our opinion that

there is a unified underlying discipline of feedback: different applica-

tions emphagize different aspects of that discipline.
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In practice, feedback is indispensable in many system designs

because of 1) uncertainties: typically, incomplete knowledge of the plant

due to plaln ignorance or to the inordinate cost of measurements;
unpredictable environmeutal effects; manufacturing tolerances; changes
in the characteristics due to ageing, wearing, loading,...; etc., and 2) the

use of inherently unstable plants, c.y3. rockets, some chemical reactors, some

nuclear reactors, some advanced design airplanes,..., etc. The effective-
ness of feedback in coping with uncertainties was actually 1llustrated in
the process of Black's invention of the negative feedback amplifier [4]:
he realized that an "open-loop" cancellation scheme is impractical
(because it requires the two '"paths'" track each other) and he eventually
conceived the negative feedback amplifier. MoreoQér, Black's paper [3])
exhibited many of the achievable advantages of feedback such as desensi-
tization and disturbance attenuation.

Even though most of the existing expositions of the effects of
feedback are essentially based on transfer functions calculations (thus
necessarily restricted to the linear time-invariant case only), we believe

that the benefits of fcedback are the consequence of two facts: first,

a topological structure -~ the loop; second, an oxder of magnitude

relation (in the context of Black's classical paper [3], it reads |Bu| >> 1)

vhich is independent of the linearity requirement. Pursuing this point

of view, we derive 'helow the basic properties of feedback in a much more
general framework: we make full use of the. recent developments in the
input-output formulation of nonlinear, distributed, time-varying, multi-
input, multi-output systems (see e.g. [5,6,7,8]). Such formulation

allows for unstable, continuous—time.as well as discrete-time subsystems;

this is achieved by using causality and the technique of extended spaces,
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i.e. considering only the time interval [0,T], with T finite but arbitrary.
; The contents of this paper are as follows.

I. Introduction

I.1 Notation. I.2 General framework

II. Black's formula generalized

ITI. Advantages and limitations of feedback
ITI.1 Densensitization. III.2 Disturbance attenuation.
" ' III.3 Linearizing effect. IIL.4 Asymptotic tracking and distur-
é { bance rejection. III.5 t(tabilization
; IV. Conclusion
References

Appendix

L I.1 NOTATION

Let R (C) denote the field of real (complex, resp.) numbers. iet

N denote the set of non-negative integers. Let Q+ denote the snt of

non-negative rational numbers. Let 1R+ denote the non-negat ive »eal

Q
lihe [0,%). -Let 'G}+ denote ‘the -open right~half complex plane,

Let R[s] (R(s)) be the set of all polynomials (rational fuonctions, resp.)

in s with real coefficients. Let Rpxq’ (chq’ R{s] qu’ R-(s‘)pxq) denote

the' set of all pxq mattices with eléments in R (€, R(s], R(s), resp.).

+
P

time instants at yhich various signals of interest are defined:

]
¢
!
?
H Let 9p(s) denote the degree of p(s) €R[s]. Let I CR. be the set of
i
i
} typically,
i

,%j & J = ifR+ for ‘the continuous-time case, J= N for the discrete time case. Let
{f M be a normed (seminormed) space -.of functions .mapping I 1irto some

2’

{
% vector space 7, (typically, ¥ =R", 7 = L} L:\ or 52,[21, 2.:, ete.).
- ,i; ‘ Associated with the normed (seminormed) space 7” is the extended normed
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(seminormed) space 77, defined by ‘7}78 = {£:F +U| ¥TEY, |£].. <},

T

where !flT 1= IFTI, fT is obtained from f by a projection map P, more

T
f(t), t <T

precisely, fT := P_f is defined by fT(t) ={

» for t, TE Y. Let
0 ,t>T
PT‘h;e denote the class {PT'EIEEWC}. Let H:“me /A H is said to be

causal iff PTHPT = PTH, ¥r €3 [8, p.38-39]. '"Nonlinear" means "not

necessarily linear'". ":=" means "lIs defined by". "u.r.c.'" means "under
these conditions". Operators, i.e. maps from 771e into -’}?e’ are labelled

by boldface symbols (e.g. G,K,F,...). Let ||2 denote the lz-norm on "

Let Cl denote the class of continuously differentiable maps [19, pp. 172].

We write a << b to mean that a is very small compared to b.

1.2 GENERAL FRAMEWORK

We will consider the nonlinear, feedback system S shown in Fig. IL.l,

where(l)

g: "ae -+ Ve’ is a nonlinear, causal operator representing (1.1)
the plant,

K: Qe + ?,(,e, is a nonlinear, causal operator representing (1.2)
the compensator,

Ij: (fe -+ &e, is a nonlinear, causal operator representing (1.3)
the feedback,

r €&, is the gystem input, (1.4)

u € %, is the plant input, (1.5)

y € S”e’ is the system output, (1.6)

e € Ke” is the error signal, (1.7)

R’e’ 'ue, Qfé are extended normed spaces, unless otherwise (1.8)

stated (hence P,L,P\e,etc. are normed spaces with nérm

denoted by |- I)'
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! We shall assume that

(I+FGK)-.'L is a well-defincd nonlinear, causal operator (1.9)

~ A

-

mapping from A% into R%.
For specific conditions under which assumption (I.9) holds, see for example
[7, sec. 2.8; 8, pp. 47]. Note that the closed-loop input-~output map

H .t +y is given by gg(m«*cx)'l‘

~y ~ e

II. BLACK'S FORMULA GENERALIZED

H.S. Black's invention of the negative feedback amplifier was

= ot e o

based on the following analysis [3]: consider the feedback system S
shown in Fig. I.1l; let GK and ¥ be specialized into the séalar transfer
: functions Y and B, respectively, then the closed-loop input-output

P (2)

transfer function.is

. u _]_'_.__gl‘l__

| s hyr T T4y B 18

i 1 1

f

; 1 ]

‘i %3 (11.2)
for those frequencies where [fu| >> 1. (11.3)

Black's crucial observation is that for those frequencies where

!Bul >> 1, or equivalently |l+8u| >> 1, 'the cutput ¥ 2'% r, i.e., the

closed-loop input-output transfer function is essentially indepéndent

of | and is essentially specified by B. So the recipe is: B is speci-

AL e it i et o e e s

it fied by the desired hyr and the forward path gain i is made as large as
' possible to achieve (II.3).
Equations (II.1)-(I1.3) summarize Black's fundamental observation.

We note that it is valid because 1) there is a loop structure, and 2) the
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loop gain |6u| is large. This reasoning can be greatly generalized to
the case of nonlinecar system S shown in Fig. I.1. Note that in the
linear, time-invariant casc, we only have to consider the sinusoidal in-
puts within some frequency band of interest and the corresponding sinu-
soldal steady-state response. But in the nonlinear case, we have to

formuiste the condi’fon i terms of inputs of interest, e.g., sinusoids

of various froquencies and amplitudes, step, ramp, parabolas, etc.

Theorem I1.1: (Black's formula generalized: soft version)

Consider the nonlinear, feedback system S shown in Fig I.1 and
described by Equations (I1.1)-(1.9). Let ﬂd e - Re be the set of inputs
]

of interest. U.t.c., if, for T sufficlently large,

1(;+§g§)‘lr|T < |rl,, W€ d?d . (11.4)
?

then, asymptotically

~

F E&r =1 on 6{d,e (11.5)

in the sense that, for T € J sufficiently large,

lr -Fl r|

LY. << |r|T, vr € ‘Rd,e (11.6)

T

Proof:

‘Since 'E, G, K .are nonkinear, we have
M. = GK(I+FGK) 2.
“yr b

‘Apply the nonlinedr operator F on the left to b th sides of this equation:

FH . = FGK(I+FGK) T
~ Tyr . aamy m ea e
) o
, =1 . 9l 3
&1 - (TG 83
: .‘,' ~N s ‘ = o
~ e g :3 & Y————
ta Of o« [0 )
§ 53 a
“7- b 5 5 £ a
o e I
‘Q " ‘:i - ""\__
i~ p— o ———




; ‘ Hence for all r € ﬁ;

r~-FH
-~ ~yr

v (QHEGR) T r
Now let r € Rd . C J?e and let T € J be large, then, using (II.4),
»

-1
lp - P rly = HreR) |y << fxlg

and (II.5) follows. Q.E.D.

v e s st e O Ve S N s ein o

Remarks II.1: 1) (II.5) says that the feedback system gyr followed by

F behaves approximately like an identity cperator as far as the inputs

of interest are concerned. Equivalently, F is an approximate left-inverse
of gyr on d}d’e; thus, on dad,e’ gyr is essentially independent of G and

is essentially specified by F. (The left inverse is the one of interest

oo ot o OO st < Ut e

P because any operator P: U » V¥ has a right inverse Q in the sense that

there always exists a Q such that PQ = Ed where Id denotes the identity

restricted to P(W)).
b) Consider G perturbed into é; call gyr the resulting closed-loop

input-»utput map, If é satisfies (1I1.4), then F ﬁyr = I, on 011 y 1.e.,

]

o
o i et

on ‘Rd o’ 1., 1s insensitive to the plant perturbations. This, however,
e’

does not asser. :hat the relative -change in Hyr will be much less than

that in G; it simply asrerts that changes in G have litt , effect on @yr.

The exact relation batween the relative change in gyr and the relative

change in G: is. glven by Equaticn (II1:7) below and discussed in Remarks

III.1,

Cm e o e S

c&l (1i1.5) ig a‘Sbﬁﬁgversion of Black's formula (II.2) To obtain
g;r ;~§_’ requires some additional assumptioms. This is done in
Theorems 11,2 and Iiﬁéﬁbelow. "
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Note that eqn.ﬁ (11.1) gives the exact relation

1

v (11.7)

.h -
yr

)=
Wl

As feedback designers know (see e.g. [(¥]), it is often advantageous to

write this equation in terms of the "inverse loop~gain"

_L @

h
B ™

1
-= = .8
yr B (11.8)
Theorem II.2 below generalizes Black's result to the nonlinear case:
an estimate of the difference Hyrr -F-lr is obtained under the condition

that the "inverse loop-gain" is small for the class of inputs of

interest. Note the similarity in form between the right-hand sideés of

eqn. (II.7) and eqn. (1L.9) below.

Theorem 11,2 (Generalized Black formula)

Consider the nonlinear, feedback system S shown in Fig. I.l and
described by eqns. (I.1)-(1.9). Let @d o C ,"e be the set of inputs of
’

interest. Suppose that
(al) ¥T €, ETRQ is a Banach space;

(a2) §~1: 'Qe -+ Qyﬁc and (FGK)_]': K’e -+ ke are well-defined nonlinear,

s

causal maps;

(a3) (FGI()"1 is continuouso)

vy

on kg, and for each r € &d o?

-1 4 .
052 - 7 4 = G
z r (I;‘(jl:) 2 € A (Rd,e) C Re’ where 2z r, n €R,

ntl 0
and /V(Rd,e) denotes a neighborhood of Rd,e in R,
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|§~l(r-e)—§_lr|

(i) X(F_l) = sup |p' L <® g
~ r€k, , TEY i
d,e -1
e := (I+FGK) "r
eT#O
(i) for each T €3,
N 1 | (FGK)-lrL—(FGE)_lr2|T
YT[(EQE) ] = sup = 11" —rM]' <l
rl’r2&j{(/{d,e) 1 2%

Yt o
then, for each T € J,

-1
(FGK) r|
-1 -1 l o T
[, oF |y < MET)— - ¥ €K, (1I.9)
A Ty LEK) T ’

~ s

In particular, if for T €T gsufficiently large,

ol (1:95)_11 <« 1 (11.10)
and -1
..l lE rl:r
| (E6KR) Tl << ==, v €K, (I1.11)
AEY) ’

then asymptotically,

) .
Ho, =F " on Rd,e (1r.12)
in the sense that for T GJ sufficiently large,
W r-F | << |F il , €& . (1I.13)
~YyE  ~ T ~ T d,e

Proof of Theorem II.2: see Appendix.

Remark IT,2: Note that the classical Black condition that |Bu| >> 1

(which is achieved,‘in design, with [u‘ >> 1) is a sufficient condifion

for the approximation (II.2). Thus one may want to pursue the iGea of




N small inverse forward path gain (large |u! in the single~input single-

output case) as follows: assuming the existence of the required inverses,

¢

ARCE Coria st =/

‘ from
| ! -1
. b v H = GK(I+FGK) (I1.14)
| } Emmm e
i ?’
j AN we obtain
i "
| gé
. -1 . -1
| : e = (TFEGR (0)
! § -1
; = E-;(QE) (I1.15)
: §~ This formula is the generalization to the nonlinear case of the well-
4 .
) b known cosresponding relation with matrix transfer functions [9, p. 121].
¥
é If we assume that ¥y € ?ﬂ o the set of outputs of interest, and for
' b
; ¥ -
‘ § T €Y sufficiently large
’ : |(GK)-lYI << |Fy] (II.16)
, - ~ T ~ T :
‘ then, asymptotically
) ; J -
I {
o H—l % F
" ~yr o = on y’d,e (11.17)
[ 4 1
' Y. in the sense that for T €J sufficiently large, |Hyry-Fy|T << |Fy|T,

vy € ?a,e' Note, however, since E and Byr are nonlinear, eqn. (I1.17)

does not imply that uyr o "

Going back to the Black formula (II.1), we note that the approxima-

ion (T. oL
tion (11'2)’jhyr gy is valid as long as
5 & 11 1 L
: - - ] <L | II-18)
% ‘B 1+5u| |B‘ (

Theorem I1.3 below generalizes this condition to the nonlinear case:

eqn. (II.18) should be compared with the condition (ii) of Theorem II.3 belc




Theorem II.3:

Consider the nonlinear, feedback system S shown in Fig. I.l1 and
described by eqns. (I.1)-(1.9). Let & C & be the set of inputs of
- ,e

interest. Suppose that F—l: Re -+ Q(fé is a well-definad nonlinear, causal

| me p.

§

% U.t.c. if
' i - -
! ! -1 ;F l(r:-e)—F r|T
, ; (1) A(F 7) := sup el < w

. { - r€R , TEY T
! ; d,e -1
P e := (I+#FCK) r
'; f eTaéO‘
(ii) for T €T sufficiently large,

-1 -1 ~1 -
MED TG Ty << [E ey, ve @R, s

- then, asymptotically,

.
‘ R =p L on & (I1.19)
iy yro - de
I A
N in the sense that for T €J sufficiently large,
i
B kit r—F'lrl < |F"1r; ¥r € £ (11.20)
T ~¥E & T ~ T’ d,e )

A

Proof of Theorem II.3: see Append.x.

P Corcllary IT.3.1 (F linear)

Consider the nonlinear, feedback system $ shown. in Fig. 1.1 and described

by eqns. (L.1)-(I.9). Let F be linear. Let {:“l :&e -+ Lje be a well-defined

st o

linear causal map. Let (){d e C&e be the set of inputs of interest.
+ s, . __l

R U.t.c. if for T sufficiently large and ¥ y € F “ﬁd o

P A b

i | ™ vy << Iyly
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then conclusions (I1.19) and (II.Z20) hold.

Proof of Corollary II.3.1: see Appendix.

Corollary 1I.3.2 (Lincar time-invaria.* case)

Consider the feedback system § shown in fig. I.1 and described by
equns. (I.1)-(I.9). Let the operators G, K, and F be linear, time~invariant
and represented by transfer function matrices G(s), K(s) and F(s),

respectively, Let é% o C A% consist of all sinusoidal inputs with

frequencies in some interval Q@ € R. Suppose that
(al) F“l: &e > %% is a well-defined.causal map;
(a2) the closed-loop system is exp. stable, i.e. the impulse response

of the transfcr function “yr: r »+ y is bounded by a decaying

exponential.
-1 "o
U.t.c., if Yw € Q, ¥y € range{F(jw) "] C¢
. -1
| L(H6KF) (Go) )y | <<|yl (11.21)
then
By (Ju) = F(Ju) ™", ¥w € Q (11.22)
in the semse that ¥r € ¢"
'lHyr(jm)r-F(jw)~lr| << IF(jm)“lrl, v € Q (11.23)

Proof of Corollary II.3.2: see Appendix

Remark II1.3.2: 1f we use the 22—norm in @“, condition (I1I.21) is satis-

(4)

fied if the largest singular value of [(]‘.+GK}3‘)(juu)]—l is much smaller

than 1, for all w € Q,

~13-




Comments on Thectems II.2 and II.3:

(a) Theorems II.2 and II.3 conciude that, under suitable conditioms, the
output y = Eyrr is, asymptotically (i.e. for large T), approximately equal
| to Eulr over the.inputs of interest within a small relative error. Thus
eqns. (II.12) and (II1.19) are complete generalizations of the Black formula
(I1.2) to the nonlinear, time-varying, multi-input, multi-output, distrib-
uted systems S shown in Fig. I.l and described by eans. (I.1)-(I.9).
(b) Typically, Rd,e’ the set of inputs of interest, consists of sinusoids
of various frequencies and amplitudes, or steps, ramps, parabolas, etc.,
of various magnitudes.
(c) Note that the extended spaces framework allows us to treat the case
where some of the operators G, K, F may be unstable and to state asymptotic

conditions such as eqns. (II.10), (LI.11).

(d) It is the nonlinearities of the maps G, I, F which forces us to use

the incremental gain (e.g. ?T[(FGK)-l} ln theorem IT.2), or Lipschitz

constants (e.g. A(F—l) in theorems I1.2 and IT1.3), over appropriate sets,
to obtain our estimates. In the linear case, one would use the induced

norms of the corresponding maps ovev appropriate sets.,

3

(e) Theorems II.2 and II.3 have important design implications: Given a

plant G, we first choose F such that, over the inputs of interest, F—I is

-~

asympotically the desired input-output map. HNext we choose the compensa-

tor K so -that the conditions of theorem 11.2 (or of theorem II.3) are

e e et o W A by LSk ! it A R

satisfied. Then, asymptotically, the closed-loop input-cutput map Hyr is

E close to F_l over the inputs of interest as we desired.

realiéing a nonlinear map by a feedback system (with large forward-path

H
4
1
i
H
3
]
‘55 ; (f) Note that F_l can be nonlinear. A simple well-known example of
|
* gain) is the logarithmic amplifier shown in Fig, II1.1 Recall that node <:>
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is a virtual ground, and that the diode operates at currents much larger
. —L :
than its saturating current Is’ thus ¥ iDl_+ Vo is given by

Vg = “Vp ¥ —VT]J]ilD/IS)' Hence vg ® -VT]Jl[vi/(RiIs)].

Examples:
To illustrate the implicatlon of the generalized Black formula on

nonlinear dynamical systems, we present the foilowing two examples:

Example II.1 (Nonlinear, single-input single-output dynamical system)

Consider the nonlinear, feedback system S shown in Fig. I.l, where

SX108

(s+1) (s+10°) (s+10%)
followed by a nonlinear memoryless map ¢(+) with ¢(+) € ¢l described by

1l \IEZ 23
30 FVGg! *eys 0 22000
$(z) =< 0.8z , |z| < 0.5 (1I.24)

0.8¢°1° 1.2, 2 <-0.5

G is characterized by a rational transfer function

K and F are characterized by constants k and 1, respectively. The closed-

loop system and the characteristics of the nonlinearity ¢(+) are shown in

Fig. II.2 and Fig. I1.3, respectively. By theorem II.2 (or theorem 11.3),
if k becomes large, then, asymptotically, the output y of the closed-loop
system will be approximately equal to the reference sigral r(*) (since

L

-~

= 1 in this case), Fig, TT1.4 -Fig. T1.6 show the system output y(+),
the error sighal e(*),and z(*), the input to the nonlinearity ¢(+), in the
"steady state" for different values of k-while the closed-loop system is
driven by r(t) = sin 10t, The effect due to high forward-path gain in a
feedback system is clearly illustrated by Fig. ITI.4. Note that the high

forward~path gain distorts z(-), the input to the nonlinearity ¢(*), so

-15-
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that asymptotically, the output y(+) is approximately equal to sin 10t.

Fxample 11.2 (Nonlinear, multi-input, multi-output, dynamical system)

Consider the nonlinear, feedback system § shown in Fig.

G is characterized by a rational function matrix

5X 108 1x 108
3 3.k
L(s) = (s+1) (s+107) (s+10 )  (s+l) (s+107) (s+10 )
5% 107 5 X 108
I{
| (s+1) (s+10%) (s+10")  (s41) (s+10%) (s+10%) |

followed by a nonlincar memoryless Cl

®(

with

A
v(z) := { —
sgn z-[%+ z|~3/7

14

zl]) (1 +0.2 tanh 22).\)(21)]
3 (1+0.2 tanh zl) '\)(22)

, if |z| < 0.5

|, if |z| > 0.5,

map $(+) described by

1.1, where

(11.25)

(I1.26)

(11.27)

K and F are represented by the constant matrices kI and I, resp., both

in R 2x2

The closed-loop system, the characteristics of v(z), and the characteristics

of 1+0.2 tanhz are shown in Fig. I11.7, Fig. II.8, and Fig., II1.9, respec-

tiveély. By theorem 1I.2 (or theorem II.3), if k is sufficiently large,

then, asymptotically, the output y of the ¢losed-loop system will be

approximately equal ‘to the reference signal r (since F-l = I in this case).

Fig: II.10 ~Fig. II.13 show the system output components y,(¢), y,(*) and

the error signal components el(s), “9'2(‘.')’ respectively, for different

values of k € R while the closed-loop system is driven by the reference

0.8sin 15t

1 sin 10t
signal r = [r' ] = [ ] Fig. IL.10 and Fig. IL.I}1 show that as

2
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we increase the compensator gain k, the system output (vector) function
approaches to the reference signal r as if the closed-loop system was an
identity map despite the complicated couplings in the nonlinear plant g.

Fig. II1.14 and 1I.15 show,for k = 40, a period of the steady-state trajec-
tories of the system outputs, y(+), and of the nonlinearity inputs, z(°),

on the‘y—plane and z-plane, .respectively, Note that the greatly distorted
trajectory of z(+) (duc tc the qoupling and saturation effects of ¥(¢))
produces a system output y(¢) very close to the reference signal [0 .SBi:iioltSt:] .
Consider the three large irregular lobes on the z(*) trajectory in the

2nd, 3rd and 4th quadrant of Fig. II.15 which reach their peaks at time
instants t = 4.54, 4,90, 5.55 respectively. Observe that at those time
instants, at least onc of the desired plant output component (yI = sin 10t,

yg = 0.8 sin 15t) reaches the peak of the negative cycle of sinusoidal
waves (see Fig. II.10 and Fig. I1I.1l). Further observe that Yy and 215
Y, and z, are of same sign for all t since 1+0.2tanhz > 0 and v(z) is

an odd function. Now at time t = 4.54, the desired plant output yz(t) = ,98,
y;(t) i «,70, thus V(zl) (v(zz)) 1s required to operate in its positive
(negative, resp.) "saturation" reglon., Due to the negative value cf Zys
1.+0.2t:anhz2 = 0.8. Consequently, (l-+0.2tanhzz)v(zl) "saturates"
earlier than v(zl) itself and 2 is required to be a large positive number
so that ¥y = (L+0,2 tanhzz)v(zl) will be approximately equal to the

desired value 0:98. This explains the large lobe on the trajectory of

z(*) in the 4th quadrant. Similar reasoning explains the other two large

lobes in the 2nd and 3rd quadrant.

-17-
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ITI. ADVANTAGES AND LIMITATIONS OF FEEDBACK

Consider the. nonlinear, feedback system S shown in Fig, I.1 and
degcribed by equns. (I.1)-(I.9) which satisfies the conditions stated in
theorem II.2 (or theorem II.3), then asymptotically, the closed-loop
system input-output map Eyr is approximately Eal. Thus we should expect
that the closed-loop system input-output map is insrmsitive to the varia-
tions in the forward path map GK and that, if T is linear, the closed-loop

system is close to a linear system even though the forward path map GK

is highly nonlinear.

In the following, we show the advantages and limitations of feedback

for the nonlinear, feedback system S shown in Fig. I.1l: section III.1

calculates the exact effect of plant perturbations on the closed-loop input-
output map and demonstrates the relations between desensitization and i)

the feedback structure, ii) the perturbation on the feedback map F, and

iii) the closed-loop stability; section III.2 establishes the exact effect
of various additive external disturbances on the closed-loop system output;
section III.3 defines a nonlinearity measure and then shows precisely

that feedback has a linearizing effect on a nonlinear plant; sections

I1I.4 and III.5 briefly review the idea that feedback can achieve asymp-

totic tracking and disturbance rejection, and stabilize unstable systems.

1II.1 DESENSITIZATION

One of the major reasons for using feedback in design is that feed~
back can reduce the effect of the plant perturbations on the input-output

map. One way to quantitatively demonstrate the desensitizatiop effect of

feedback 1s‘to compare a feedback design with a corresponding open-loop




design [10}: consider the rionlinear, feedback system S shown in Fig. I.l
7i and described by eqns. (I.1)~(1.9). Note that the closed~loop input-output

. map Hyr: T +— v is given by GK(I+TGK) . Also consider a comparison open-

~ A

loop system (shown in Fig. III.1l) consisting of the same plant G preceeded

} by a compensatnr KO Thus the open-loop input-output map Hy r: r — y0

¢, is given by GKy. Now if we select
co _ -1
ty = xaeo (.

then for all system inputs r, y = Yo» i.e. the (nominal) open-loop input-

output map Hy R A Yo is identical to the (nominal) closed-loop input-
=0

output map Byr: r —*> y., Consider now an arbitrary, not necessarily small,
perturbation AG on the plant G, then the plant G becomes G := G +AG; the

clesed-loop (open-loop) system input-output map H  (H ) becomes

o

~ ~ -1
; H = H +AH = GK(I+FGK 1= + .
ok wyr T Lyr S (pdio ™ (~y0r Byor F e Gk = GR(T+FGK) ™,
i resp.). The perturbed closed-loop (open-loop) system is shown in Fig. III.2

. (Fig. III.3, respectively).

,i“ e Note that the changes of the closed-loop, and the open-loop system
f .
: input-output maps due to the plant perturbation AG are given by
M= B -u = GK(I+FEK) Y -GR(T+FGK) L (II1.2)
~yT o' D SO ol N e '
i i1 i= H - = = = AGe
~Y AT Ey T Ey r 950 ~~0 Ag EO A §(E+§9§) (1I1.3)
0 0 0
réspectively.

Theorem III.1 below generalizes some of the results in [10,11,12,46]
and establishes the exact relation between AHyr and AHy e and thus makes
s 70
. precise the desensitization effect of feedback for nonlinear systems.

=19~
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Theorem III.1 (Desensitization of plant perturbation by feedback)

Consider the nonlinear, feedback system S shown in Fig. I.l and
described by eqns. (I.1)-(I1.9). Also consider the compariscn open-loop
system shown in Fig. III.1l. Let Agyr and Agyor denote the changes of the
closed-loop, and the open-loop system input-output maps due to the plant

perturbation AG, respectively. Assume that

(al) F: ﬂ% > @e is linear;

(a2) the perturbed plant G satisfies (1.9), i.e. (I+FE';K)“1 is a well-

~ aesa,

defined nonlinear, causal map mapping k; into Az;

~ ~ ~—~1 1
(a3) 915 Re -+ ‘% and (£+§I~Q:) : %le -+ ‘?atc are C maps,
then
LR |
m = 0[I+D(§l§)'£~‘] da»Agyor , on »Qe (111.4)

where the Fréchet .derivative (13, p. 32] D(GK) 1is evaluated at

(T+FCR) " (rtobr) with Ar := PO, (1), r €K, and o € [0,1],

~ s O

Proof of Theorem III.1l: see Appendix.

When the map 6K is linear, thecrem III.1 reduces to the following

well-known result [10; 11, p. 24-26; 11 includes an extensive bibliography].

Corollary III.1l.1 (Linear cdse):

Inder the conditions stated in theorem ITI.1l, if in addition, GK is

linear, then

e (TatwEy "t (111.5
AH = (I+GKF) A}jy L, 2 on c{?e )

~y N

0




-

Proof of Corollary II1.1.1: Follows directly from the fact that D(CK) = CK,

when §§ is linear.

P Remarks II1.1:

(a) Theorem I1I.1l indicates that for a class of plant perturbations AG,

if K and F are chosen such that ¥r € @1 o (c zQe), the class of inputs of
~ ~ b

=

.o interest,

| 1 l

g 15 [I+D(CK) *F) “dasAH_  (r)] << |aH ()] (I11.6)
0~ ~Yo* ~Yo©

i then, for such inputs r(*), the change of output (AHyr(r)) in the feedback
gystem S caused by the plant perturbation AG is much smaller than the

corresponding change in the open-loop system., Thus, with appropriate

D 3 IR S E, A g

feedback design, the nonlinear closed-loop system can be made iless vulnerable
to the perturbations on the plant and hence performs more closely to the

desired input-output map.

(b) Equation (III.4) makes precise the concept (built upon linear cases)

LR o 5
[

that if onemakes the (linearized) inverse return difference small, then

the closed-loop systen is insensitive to the plant perturbations. Note

that edn. (III.4) states precisely where D(CK) has to be evaluated and

e/ F ittt

h% . along what path the linearized inverse return difference map should be

integrated.

7

f y
SR

(c) Differential sensitivity: suppose that G, Hyr are invertible, then

i
Pogr - -
j;% " eqn. (III.4) implies that, since AH = AG+G l°GK(I+FGK) 1,

! ‘f s ( ~ 0 ~ o~ A N meayay

z% )
1 O A | 21
gy AH B~ = {T+D(CK) *F] ~da+*AGG (111.7)
E ?? For ‘AG, hence Ar, sufficiently small, (III.7) can be approximated by

-21-
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AIjyr I-}yi' - [%+D(§l§) E] Ag 9 (111.8)

The mgp L1+DIGK)~F]~1 is thus a complete generalization of the classical

differential sensitivity function (for linear time-iuvariant case, see,

e.g. [14,15] for single-input single-output case, [10] for multi-input
multi-output case; for some nonlinear case, see e.g. [11]).

(d) Consider the special case where 9, 5, g are represented by some trans-
fer function matrices G(s), K(sj, F(s), ruspectively., To achieve desensi~
tization with respecc io the given plant G(s) by feedback, one may design

K(s) and F(8) so that the maximum singular value of the matrix

LI+5(jw)K(jm)E(jm)]"l be much less than 1 over the frequency band of

interestSS) Then, by Corollary III.1, |(AHyrr)(jm)|2 << |(AHy rr)(jw)lz,
n N !
for any (Aﬂy rr)(ju)) (S 0 over the frequency band of interest. Note that

0
this requirement is not equivalent to the following: '"over the frequency

band of interest, |Ai(jw)| >> 1, ¥i, where Ai(jw) is the i-th eigenvalue
of I-+§(jw)K(Jm)F(ij'. Hence, in the linear, time-invariant, multi-input,
multi-output case, plotting the eigenvalue loci of I-fa(jw)K(jm)F(jm)

with-w as a parameter, although useful for stability studies [16,17],

does not have the same desensitization interpretation as in the single-

input, single-output case (see e¢.g. [14; 15, Chap. 11]).

Discussion:

A. Desensitizatipn,and Feedbackésgyucture: We note that one feedback
structure is not necessarily superior to another éne in terms of sensitivity
with tegpect to -the plant. We compare the nonlinear, feedback system S
shown in Fig. 1.1 and described by eqns. (I.1)-(I.9) with the nonlinear,

gulti~loop, feedback system shown in Fig. ITI.4 which consists of the




same plant 9 and noulinear, causal operators 51, EZ’ El and EZ'

Suppose that the (nominal) closed-loop system input-output maps of

these two nonlinear, feedback systems are .identical, i.e.

S e s A ML LR se gy
- R P - >

k4

GK(T+FGK) ™ = GK_ (T+F.GK )"lxl[1+Flcx7(1+cmK2)'1K )7 (111.9)

~ o e ~ ~L v

F 2

) N Now we have the following vesult.

Proposition ¥IT1.2:

If CGK, GKZ’ Kl are linear, then eqn. (ITI.9) becomes

. -1 -1
/ = 3 0 D .
- VLHGKE) TOK = [THGK, (T T T 70K (111.10)

3 Proof of Propdsition ILII,2: see Appendix.

5 “ith eqn. (II1.10), the relation of the (differential) sensitivities
of the two feedback structures shown in Fig. I.1 and Fig, III.4 is made

- clear in the following remarks.

Remarks III1.2;

(a) Suppose that, in addition, the maps E, E and EZ are also linear;

1
‘ then (I+GKF)—1 and [IiGKZ(inKlFl)]~l are the differential sensitivity

functions (see equn. (II1.8)) of the feedback systems shown in Fig. I.1

and Fig, 1II1.4, rvespectively. Thus eqn. (IIT.10) exhibits a relation

between these two differential sensitivity functions.

(b) In the special case where G, K, F are repzeéented:by some scalar

ey o
R B A L

transfer functions, eqn. (III.10) reduces to

e et 5 e A < o ghors

ki X
PR )_‘\

xS i e b i e ontd N i et A A gl R PO T 5

3 [l'Fg'(s)lc(s)f(s)]-1 ‘= FZ(S)kl(S) (1I1.11)
S ST R . -1 k(s) )
B [L4(s)k, (8 « (£, (o) () () .
. Hence, by appropriately designing k(s), k,(8),. ky(g), consistent with other

requirements, we can make the fecdback system shown in. Fig. I.1 either more,

“
P RN SN > -
o g | o

2 3y e

-23-
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or less sensitive (to plant perturbations, over the frequeu;y banQ of

ifiterest) than the one shown in Fig, 1IT1.4.

(c) For a recent discussion of using local feedback to design an audio

power amplifier, see [421,

B. Desensitization and Feedback Perturbations

Proposition ITI1.3 below derives the exact relation between the relative
change in the closed-loop system imput-output map (due to changes of the plant
G and the feedback F) and the relative change in the feedback F, thus makes

clear the tradeoff between the sensitivities of the closed-loop system with

respect to the plant and to the feedback.

Proposition III.3 (D‘esensicizationand feedback perturbation)

Consider the nonlinear, feedback system § shown in Fig. I.1 and described
by eqns. (I,1)-(1.9), where the plant G is perturbed and becomes G. Let the

~n &y e

d 0 e Gr(mFR)E = R +q -
é‘\’e +Q& and }jyr 1% GR(T+FGK) 5yr+A§yr' R, +{(}e be well-defined nonlinear,

feedback -map ¥ be perturbed and become F := F+AF. Let “yr 1= 5K(I+F§K)-l.

causal maps (thus AHyr includes the effect of plant and feedback perturbations).

Suppose that

(al) F: Jife +o’€e is j‘l\ingar';
. —ln D »
(a2) }: PR +€f(‘j,e and il ~yr Qj‘e -*(2 are well-defined, causal maps;
(a3) §§ and (:{i'gég)- are Cl ‘maps.
Then
- ‘ ‘.1 '
Aﬁi,r*ﬁ 5 {30[I+D(Gh) 7Y do;—I} 33 'AF on‘%t (111.12)

where: thg Freche._ ‘derivative D(Gh) is evaluated at (I+FGK) (rwAr)‘ with

B 4

‘A ~ —AF:wy~ r, r € Re and' o € 40,19,
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Proof of Proposition IIL.3: see Appendix.

Remarks III.3:

(a) Note that if we choose to desensitize the closed-loop system with respect
to tha plant G by making the inverse lincarized return difference [I+D(6K)'F]-l

"small" over some neighborhood of 4% o the class of inputs of interest, as is
l b4

suggested by eqn. (III.4), then S [§+D(5K)'F}_1du-1 =2 -1 and by eqn. (III.12),
0 M ~ bt
~“1 e —lo O = q
Agyr gyr = ~F "+AF on %%,e : Byrﬁid,e' Thus, the relative change in gyr

is approximately equal to the relative change in the feedback §3 consequently,
the closed-loop system is insensitive to the plant perturbations but sensitive
to the feedback perturbations.

(b) In the special case where ?, 5, F are represented by some scalar transfer

functions, eqn. (ITI.12) reduces to the classical result: over the frequency

Ah r/h "

Af/E
(¢} It is often advantageous to trade the insensitivity with respect to the

band of interest, if |l+x{jw)k(jw)f(jw)| >> 1, then x -1,

feedback map F for the insensitivity with respect to the plant G, since the
feedback F 1s usually operated at a low power level and hence can be built

with inexpensive, high quality components,

C. [lesensitization and lnstability

It is well-known (see e.g. [l4, p. 141-143]) that, for most linear,
time-invariant, single-input, single-output feedback systems, the closed-loop
system stability requirement imposes an upper bound on the system loop gain, thus
the stability requirement limits the achievable densitization of feedback.

We show below that such a constraint still holds for a large class of linear,

time-invariant, multi-input multi-output systems.

Consider the feedback system S shown in Fig. I.l where K, G and F are represented
n;xn n _xn, n_Xn T -

1 0, C(s) € R(s) ° l, If1 ER ° o’ respectively wheve k € 1_R+. To

o]

by kM € R

-25—
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achieve desensitization with respect to the giver. plant G(s) by feedback, we may

choose k EIR+ as large as possible so that the maximum singular value of the
matrix [I+k§?jw)ﬂ]“l be much less than | over the f(requency band of

interest. However, stability considerations often impose an upper bound on

the allowable k's. More precisely, we have the following proposition.

Proposition IIL.4 (Lesensitizatlon and instability)

Consider the feedback system S shown in Fig. 1.1, where K, G, F are

n xn, n Xu, n xn
represented by kM € R * » G(8) € R(s) IER

s 0, respectively, with
k > 0, and siadei[T+k G(e)M] 7 constant. Assume thut(6) Vi = 1,2,.00,0 ,
and ¥j = 1,2,...,ni.

3[(11‘1 ()] - B(nij(S)] >3 (I11.14)

"4 th o0y
where 5—1 is the (i,})  element of G(s) ER(s) © % aund d[p(s)) denotes the
1]
degree of the polynomial p(s). Then, for k<51{+ sufficiently large,

det[I+kG(s) +M] has §+—zeros with real parts which tends fo 4« as k + =,

Proof of Proposition I11.4: see Appendix.

Remarks III.4:

(a) Since det[I+kG(s)M] is equal to the ratio of the closed-leop sytsem
characteristic polynomial to the open-loop system characteristic polynomial

(seé e.g. [18]), Proposition IIT.4 states a condition under which the closed-

loop system becomes unstable for k sufflciently large.

(b) Whén n, =n = 1, i.e., single-input single-output case, Proposition III.4

reduces to ‘the classical result which can be easily proved by, e.g., the root

locus method (see e.g. [l4, p. 141-143]).
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III1.2 DISTURBANCE ATTENUATION

All physical systems operate in some envlronment where they are subjected
to some "uncontrollable" disturbances. 1f we knev exactly these disturbances,
then ve could program (in advance) the system inputs such that the effect of
these disturbances be cancelled out. However, in most real systems, there
is either no complete knowledge of such disturbances (temperature, wind,
wear, load changes, etc.) or the cost of measuring them and compensating
for them 1s prohibitive; hence such "open-loop" design based on cancellation
is not practical and we have to resirt Lo feedback. The analysis below shows
exactly what feedback can achieve for disturbances attenuation,

Consider the nonlinear, feedback system S shown in Fig. 1.1l and described
by eqns. (I.1)-(1.9) but subjected to some additive external disturbances

as shown in Fig. I1I1.5 where

di(') is the system—-input disturbance,

dg(') is the plant-input disturbance,

do(°) is the system—output disturbance,

df(') is the feedback-path disturbance.

It is intuitively clear that, in general, an error-driven feedback
system such as the one shown in Fig. III.5 cannot attenuate the input dis-—
turbances di(-) and the feudback-path disturbance df(°), since such feedback
systems cannot distinguish the system-input disturbance di(°) from the system input
r(*) and the feedback pativ disturbance df(°) from the system output y(*). Indeed,
as seen from Fig. ITL.5, the ervor signal &(+) is affected by the corrupting

signals di and df; hence ¢{+) cannot drive the plant as desired (in some cases,

judicious filtering may alleviate such problems). Nevertheless;aaémé;pect that

feedback can reduce the effect of plant—;nput and system—output disturbances

27~




on the system output; indeed such effects could be modeled by some appropriate
plant perturbaticns, and their effect on the system output has been shown,
| : in sec. IIT1.1, to be reducible by feedback.

The propositions below evaluate exactly the effects of the disturbances

é di’ do’ df, dg on the system output y(*). Note that unlike the linear case,

‘ ' the effect of the disturbance da (¢ = 1,0,f,g) on the system output y(*) is

not given by gyda(da), where gyda: d vy is calculared when r and all the

other disturbancus are set to zero.

Proposition III.5 (System~output disturbance, fcedback-path disturbance

and feedback)

Consider the nonlinear, feedback ;ystem shown in Fig, IIT.5 and described

by eqns. (L.1)-(1.9). Let Gu := Gﬁ+qo and Fy := R(§+df). Suppose that

o (al) F: 4 - &, 1is linear;
: =1 1
! (a2) GK and (I+FGK) ~ are C™ maps.
‘ ? -~ -~ ~ AL
5
; U.t.c.
; 4 : = = = =
(1) i€d #0andd =d =d; =0, then ¥r €k,

by := §K(§+§§§)'1(r) - GK‘(I+FG!~<)'1'(1~)

-

Nmanpony
[ 't

= | [m0(eR) F1 daed (I11.15)
o TE E

e o Ao ot v ok

where the Fréchet derivative D(GK) is evaluated at (I+F5K)—l(r+aAr) with

Ar = §°d and o € [0!1].

[o)

PUFUTIU -

A Y = vy E
(i1) 1£:d) #0, 4. #0and d) = d =0, then ¥r R,

et 4 s e e B e S S ot

by i= GRCTHER) ™ (r) - TRI+FCR) "L (x)

1
= {5 [I+D(GK)'I-‘J‘1d0L-’-‘I}'d£ (III.16)
0~ b da -~ -~

where the Fréchet derivative D(GK) is evaluated at (£+§§K)-l(r+aAr) with

br = -F+d_ and o € {o,1].
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Proof o1 Proposition III.5: see Appendix.

Proposition TI1.6: (Plant-input disturbance and feedback)

Consider the nonlinear, feedback system shown in Fig. III.5 and described

~.

by éqns. (1.1)-(1.9), where dL =d =d.=0. Let Gu := §(§+dg). Suppose

0 £ -~
that
(al) F: ?a(e + & is linear;
(a2) CK (I+FGK) are Cl maps.

~

Then, ¥r € @e

by i= GR(I+FGK) ™ (r) = GK(T+FGK) ™ L

~a L a svevey aﬂ«

= {S [1+D(CK) *F]~ da} [s Db(u+Bd )dB] d (111.17)
0~ o~

where the Fréchet derivative D(CK) is evaluated at (I+F5K)‘1(r+aAr) with

= F[G(u+dg)—g(u)], u = 5(£+§QE)-1r, and o € [0,1].

Proof of Proposition II1.6: see Appendix.

Proposition IIT1.7: {System~input disturbance and feedback)

Consider the nonlinear, feedback system shown in Fig. III.5 and
desc¢ribed by eqns. (I.1)-(I1.9), where dg = do = df = 0., Suppose that ¥, 6K
and (I+FGK)-l are C1 maps, then ¥r € A;,

~ ssaray

by := GK(I+FCK)~1(r+d,)-GK(I+FGK)_1(r)
(3 L+FCK

s D(GK)[I+DF D(CK)] da- 1 (I11.18)
Y0

where the Fréchet derivative D(Gg)‘is evaluated at (I+F§K)—l(r+adi) and' DF

is evaluated at: GK[L+FGK] (r+adi) with o € [0;1].

~

Proof of Proposition III.7: Follows directly from Taylor's expansion theorem

119, p. 190].

-29-
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Comments on Propositions IIT.5-T11.7:

(a) Egqns. (II1I.15)-(III.18) show exactly how feedback can reduce the effects
of various external disturbances on the system output. Note that, by eqns.

(111.15) and (IIT.16), simultancous disturbance attenuation of d0 and d_ is,

f
in general, impossible.

(b) In the special case that G, K and I are linear, the effects of the dis-
turbances d , df, dg’ d, on the system output reduce to (I+GKF)’1dO,
[(I+GKF)—1—}]df, (I+GKF)-ICdg and GK(I+FGK)—ldi, respectively. Note that in

this case, those disturbance-output maps are related by, with obvious

notation

= L+H =1-H . KF=1-H g (II1.19)

H
"’ydo "‘ydf "'ydg'““‘ ydi.~

III.3 LINEARIZING EFFECT [20](7)

It is often required that. the map f{rom the system input to the system
output is as linear ag possible, e.g. HiFi amplifiers, telephone repeaters,
measuring instruments, pen recorders, clc. How to design such a system which
uses some inlieremtly nonlinear plant is an important problem. From the
discussion in section II, we know that if the feedback map E is linear and
if the inverse loop gain is small, then the closed-loop system input-output
map will be close to a linear map. Thus we expect that feedback has a
linearizing effect on an otherwise nonlinear system. To- make this idea

precise, we first introduce the concept of nonlinearity measure.

A'NonlinearityGMeasure

Let Cé be an extended normed (input) space. Let %% be an extended

semi-normed (output) space. Let? = ﬁ@:?{e-+ ?;l, ¥ is gausal, nonlinear}.
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Let L = {L: ‘?,(e -> ye!l: is causal, lincar}. Now consider N € Nand ¥Y'C ue"
a set of inputs cf interest. Tntuitively, the degree of nonlinearity of N,
when N is driven by u € ¥, may be measured by the error Igu - gul for u € V,
where L‘EX is a "best" lincar approximation of N over V. More precisely,

we introduce the following definition.

Definition 1II.8 (Nonlinearity measure)

Let N en, Yc 'ué and T €J. The nonlinearity measure of N over 9/

with respect to T is the non-negative real number defined by

Sp (N, i= dnf sup | Nu-Tu|

N T " (I11.20)
&L &V -

Remarks 1I1I1.8:

% X
(a) L E«I-is thus said to be a best linear approximation of N over YV ift L

is a minimizer of (TT1.20), i.c., § (N¥) = sup |Nu - I#u| .
P S
Wy
(b) In the case where %% is a seminormed space, we then have the nonlinearlity

measure of N over ¥ with respect to supd’ (typically, supd = «) and eqn. (TII.20)
becomes S(N,%) = inf sup |Nu-Lu].

- L - T
(c) The well-known describing function (see e.g. [21,22]) is the best linear
approximation of a nonlinear operator with respect to our nonlinearity measure
(III.20) provided that %/, the class of inputs, is suitably défined. Recall
that the é¢riterion which the deseribing functior, method uses to find a best linear
approximation L of a nonlincar system § is to minimize the mean square error
lim~% ST[(gu)(t)-(Eu)(t)]zdt over a class of inputs u(*) (usually
=300
Z(t) = gsin(ug a >0, w>0, and thus L depends on the parameters a, w). Te
-see the relation between the describing function and our nonlinearity measure,

leta > 0, w > 0 be given, let ¥ be the singleton {a sin wt} and

n
%é = {y(*): ngkamx 0Iy(‘) is asymptotically %ghperiodic(g)} be equipped with

~31-
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the semi-norm ly] : [1im -s Iy(t)l dt] , then a best linear approximation
to the nonlinear system N according to our definitfon TII.8 is a minimizer

. of li:'% g;[(gu)(t)—(gu)(t)]zdt which is precisely the describing function

of g with.respect to the inputs u(r) = asinwt. Note that in this case,

the minimizer of (I1I.20) (i.e. the describing function of g with respect to
u(*)) is parametrized by a and w.

(d) With the framework of extended spaces, we can discuss the nonlinearity
measure of a nonlinear system over a bounded time interval, say, [0,T].

Note that a nonlinear system g may have its nonlincarity measure 6T(§,%0 =0
¥T < ™ € 9, but GT(y,@U #0 for T > TV, simply because N is operating

within the linear range.of its characteristics before time T*.

(e) At the cost of some complication, the class of nonlinear operators
under conslderation can be extended to include the noniinear dynamical

relations.

(f) Other nonlinearity measures may be defined, e.g,, we can define

lNu-Lul
8 (N:Y) = inf -sup .;:T_T_—— . Note that such nonlinearity measure does
€L wEY u

|

!

L1 2] #O
Eil satisfy all the remarks mentioned above and all the properties stated below.
Ly

Hownver, we have not been able to obtain results similar to the Theorem IXI.1l4

below.

Properties oﬁsthe“NohlinearityTMeasurevﬁTSN,ﬂ)

Proposition TII.9:

1f N, = N +Ll for some L, ed, then & (N A =38 (Nz,?/) VT €D,

S e ek S i e

V%fCiﬁ%.

Proposition III.10:

I£ U € 9 C4, then §.(N,%,) < 6,(N,25), vr €T.




o i 4 e

P T

G Arow -t

g

Proposition I7I.11:

Suppose that VT €7, PT‘% is a normed space.and that §IO = (0. U.t.c. if
(9

N is Frechet differentiable at 0, then VT € ‘U,

L]

0 < éT(N,ﬁT(o;s)) < _sup  [Nu-DN(0)+u|, » 0, as B >0 (111.21)
- LEBT(O;B) T

where I-ST(O;B) := {u€ %Ilul,rf_ B} and DN(0) denotes the Fréchet derivative of
N at 0.

Proposition II1.12:

Let ‘VC?,L(_ be the sct of inputs of interest., If for some I, € £,

Nu = Lu, ¥u € %V, then GT(N,’U) =0, ¥I € T In particular, if ¥ € X,
then 6T(§,'1f) =0, ¥T €ZJ, v¥C ‘Zl,e.

Proposition III,1l3:

Let ‘?/C‘uo be the set of inputs of interest. Let £ be specialized into

Qo

the class of continuous, linear, causal operators mapping ?,(e into %e'

Suppose that

(al) VT €7, ET(&! is a Banach space;
(a2) VI €, YC U is bounded, i.e. sup IuIT < w;
=l/s
(a3) ¥TE€Y, IdB > 0 such that YD ﬁT(O;B) 1= {ueue=| |u[T§B},

U.t.c. if for some T €J, (ST(N,'?/) = 0, then, 3JL* € Lsuch that

|§u--1,*u|T =0, vu€ 7. (IT1.22)

Proofs of Propositions TIL.9-TTL.13: see Appendix.

Comments on Propositions ITIT.9-I11.13:

(a) Proposition IIL.9 states the obvious fact that if two nonlinear, causal

-33-
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operators differ by a linear causal operator, then they must have the same

nonlinearity measure. It is also Intuitively clear, from a perturbational
viewpoint, that if a linear, causal operator is subjcct to some noanlinear
causal perturbation, then the nonlinearity measure of the perturged nonlinear,
causal operator must be the same as that of the nonlinear perturbation.

(b) Proposition IIT1.10 emphasizes the fact that the nonlinearity measure
depends on the class of inputs we arc considering: the larger the class of
inputs we consider, the greater the nonlinearity measure of operator §.

(¢c) Proposition III.1l1l is another way of stating the well-known fact that

(since NO = 0) the best local linear approximation of a Fréchet differentiable

nonlinear operator N at the operating point O is the Fréchet derivative of N

at 0. Note that by eqn. (LLL.21), NT(N,ET(O;B)) +0as B ~0, i.e. N behaves

locally like a linear operator as we expected,

(d) Proposition I1IL.12 states that GT(§,V7 satisfies the natural requirement
Jor a nonlinearity measure, namely, if § behaves as a ‘‘lnear causal operator

aver the class of inputs ¥ in the time interval {0,T] CJ, then GT(§,W) = 0.

(ei With some mild technical assumptions, proposition I1T1.13 establishes

the following: desirable property of 6%(§,W): if 6T(§;%) = 0, then N

behaves like a ;igggg, causal operator over ¥ in the time interval [0,T, cY.
Note that if GT(g,Q/) = 0, then GT,(Q,ﬁf) =0, ¥I' < T.

Linearizing Effect of Feedback

With the nonlinearity measure defined in eqn., (II1.20), we now can make
precise ths idea that feedback has a lincarizing effect on an otherwise
nonlinear gstem.

Wote that the nonlinearity measure defined in (III.20) allows us to compare

nonlinear systems by their degree of .aonlinearity. However, a meaningful




comparison requires careful choice of the sets of inputs since the nonlinear-

A ity measure depends on the set of inputs we are considering. From an engi-

neering point of view, we are interested in comparing systems which produce

desired outputs (e.s., signals within certain frequency band or dynamical

) range) . Hence in the following discussion of the linearizing effect of
feedback, we shall compare the nenlinearity of measure of a nonlinear plant
and of a feedback system which includes such a plant; we shall choose a set

of Inputs for ecach system so that both systems produce the same set of

desired outputs.

\ Consider the nonlincar feedback system § shown in Fig. I.l and described

g by eqns. (1.1)-(I1.9), except now that

W

o i?e is an extended seminormed space (111.23)
1
H . <
| i Let ?ﬁ,e j% be the set of desired outputs. Let ﬁd,e K@
Ly
5 t G - . t E
i ? be the set of system-inputs r(:) such that Byr &d.e }d,e' s
! ?%' ’ Let Z% . C Q% be the set of plant-inputs u(*) such that (II1.24)
by ’
B = .
: i%, . gzﬁ,e %%,e
I 4

P

Now we have the following theorem:

Cran

¥

f

!

i

L

z 1 Theorem IIT.14 (Linearizing cffect of feedback)
|

)

¢

Consider'-the nonlinear, feedback system S shown in Fig, I.1 and described

-
b i

by eqns. (I.1)-(I.9) and (III.23)<(I11.24). For some T € &, let L¥ € £

be a best linear approximation to G, i.e.

é ST(E’iﬁ,e) = gup lgu-kcu]T (1I1.25)
=
. ’
2N
{ 3

Assumé that F: ge é-Re and K:ﬁL}~>Q§Zare linear, causal and that the linear

RS

*
map'(I+LGKF) has a causal inverse, then

wirs | o b g
ik

rrdr

o lsabt s T

e
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of interest.

8 (M ’&;,e) 2 p'éTkg’%ﬁ,e)

(111.26)
where ﬁyr S §5(2+FG§)“1 is the closed-loop input—-output map and
k-
| (141K lle
p = SUI‘)~ lys (III-Z?)
yE€4, T
yT#U

with a}e t= (G- E(,)'u

Proof of Theorem III.l4: see Appendix.

Remarks IIL.l4:

(a)

In a design problem, given some G € 77 together with its best linear

*
approximation LG over Qﬁ o with respect to soeme T € I, if one designs K, T
v , -~ ~

such that p be much less than L, consistent with other requirements, then

by . . { } i.c. : $ ¢ 'S
y eqn. (111.26), GT(HYr j{! () &T(( l‘e)' i {or the class of inputs under

consideration and for the cime interval of interest, the closed-loop system

is much closer to a linear system thai G itself, This result clearly

exhibits the linearizing :.f. -+ feedback.

(b) DNote that p is defined via the inverse linearized return difference

operator (I+Ez§g);l

(when we break the leop after the plant G): since

the nonlinéar plant G can be thought as a linear plant Eg being subject to

some nonlinear perturbation G—LG, and we know that (see eqn. (III.8)or [43]) as a
first order -approximation, the effect of a nonlinear perturbation an the otherwise
;gggg§~closed¥loop system is reduced by the factor (§+§z§¥)~l

(¢) IfL Las ¥, F are lineur and time-i.variant, thus represented by transfer

by feédback.

function matrices Lz(jw), K(jw), P(ju), respectively), thenp << 1 if the

maximum singular value of [Ii-Lz",(j(u)K(1‘00)F‘(jw)}_1 is small over the frequencles
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Example III.) (Single-input single-output memorvless system)

Consider the nonlincar, feedback system S shown in Fig. 1.1, where 9 is
characterized by the piccewise-linear function shown in Fig. TII.6, E and E
are represetned by constant gains 10 and 1, respectively. It is easy to
show that the closed-loop input--output wmap }lyr is characterized by the
plecewise~linear function shown in Fig. 11T.7. Now let us consider the =ase

where % e = {y(*): R, "R

lyl,,<0.8}, then the correspending ud,e = {u(*):
]R++1R||u|m_<_l.2} and Rd,c = {r: 1R+->]R“r|w§0.92}. & straightforward minmax
calculation shows that the best lincar approximation L of (‘ is a constant

gain of 0.6 and the nonlinearity measurc of G is (S Zlu ) = 0.12, VT ET;

more precisely, § (G’% c) = sup l(‘u 0. 6u| = 0.12. Similarly,
~ ]
tﬁ e 0,12
Sr(}lyr /{d ) = skxp [ljyrr-——rl e gl VT EO‘. Thus the nonlinearity
dat e S W
measure of G has badn reduced by 7 by feedback., Note that p 150.6%10

i.e. for this example, the equality holds in eqn. (III.26). The best linear
approximations of G and Byr are shown, by the broken lines, in Fig., III.6
and Fig. III.7, respectively. To further illustrate rhe linearizing effect
of feedback, we drive the nonlinear plant 9 with u = l.2sinwt and the closed-
loop system G§(5+£§§) with r = 0,92sinwt. The corresponding (open-loop
system) output Yo and the (closed-loop) output y are shown’in Fig. 11I1.8.

In general, it is quite difficult to calculate the neonlinearity messure
GT of a nonlinear dynamical system and to obtain the best liuearvapproximaciou<
of such a system. However, for a given nonlinear plant g, ve may irlustrare
the linearizing effect of feedback by computing éhe closed-loop system nutput
with respect.to several different compensator gains while the cloSeésioop
system is driven by some test signals. FExamples LI.1 and II.2 in section II

clearly exhibit the linearizing effect of feedback on nonlinear dynamical

systems. Note that the highér the compensator gain is, the more linear the

~37-
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closed-1oup system appears to be as we expected from the result of theorem

II1.14 (since p defined in eqn. (II7.27) decreases as the gain of K increases).

TIT.4 ASYMPTOTIC TRACKING AND DISTURBANCE REJECTTON

One important application of feedback in control is the servomechanism
design which aims at asymptotic tracking and asymptotic disturbance rejection.
Let us consider the asymptotic tracking problem. From the discussion of
generalized Black's formula in sec. TT, we know that if we let E-= T in the
nonlinear, feedback system S shown in Fig. 1.1 and if we make the "forward-path
gain" sufficiently large, then, asymptotically, the output y(+) will be
approximately equal to the system input r(+}. Thus we might intuicively
guess that we can obtain perfect asymptotic tracking, l.e. zero steady state

error, by requiring the "forward-path gain" be infinite at the frequency of

the system inputs. This turus out to be corrvect. Indeed in the classical

servomechanism design [23], an integrator is required in the compensator in
order that the system output track suep zignals with zero steady-state error.

For multi~input, multi-output systems, such a deslgn principle has also been

proven to be correct for linear (see e.g. [24,25,26]) as well as nonlinear

cases (see e.g. [27]).

I1X.5 STABILIZATION

‘Stability is a primary conceérn of eagineers since an unstable system
ig obviously useless. Howevek, there are many inherently unstable systems
woch as vocket booster systems, nuclear reactors, some chemical reactors,

atc. which are uséful in practicée and hence must be stabilized. Note that

"Eny~open-loop=stabiiizatioﬂ scheme is doomed to fallure in practice hecause

it 1is based on some kind of cancellation which will eventually fail as a
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result of changes in element characteristics, effects of environment, etc.
Hence feedback seems to be the only way out.

Many researchers h.ve studied the use of feedback in stabilizing unstable
systems. TFor lumped, Lincar, time-invariant systems, it has been shown that
a constant state feedback (sec e.g. [28,29]) or a dynamicél output feedback
(see e.g. [30]) can stabillze an unstable system; recently, Youla et. al.
(31] gave a characterization of all stabilizing feedback controllers. FYor
lumped, linear, time-varying systems, a time-varying state feedback can be obtained

(see e.g. [32,38,39,40,41)) to stabilize an unstable system. For distributed,

linear, time-invariant systems, state feedback can also stabilize unstable
systems (see e.g. [33;34, chap. 14]}). In contrast to linear cases, little
is known 2bout the nonlincar case except for some limiting cases. It
should also be pointed out that little is known about how to proceed with

the design of a, say, state {eedback, stabilization scheme so that the

resulting closed-loop system stability is very robust with respect to changes

in the plant and/or the feedback map. In this aspect, for the linear time-

invariant case, singular value analysis has provided some valuable informa-

tion (see e.g. [44]).

IV. CONCLUSION

This paper has treated the fundamental properties of feedback for
nonlinear, time-varying, multi-input, multi-output, distributed systems. We
observed that the classical Black formula does not depend on the linearity
nqt the time-invariance assumptions; we used the input-output description
of nonlinear systems to actually generalize Black's formula to the nonlinear
cgse (Theorems II.1 to [I.3). Our analysis then established achievable

advantages of feedback, familiar to feedback engineers, for nonlinear systems

-39~
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(section IIT): theorem I1:.]1 showed the exact rclation between the changes

in the open-loop and closed-loop input-vutput maps caused by nonlinear, not

necessarily small, plant perturbations; propositions T11.5-I1I.6 calculated
the exact effect of various additive external disturbances on the output of

a nonlinear system; theorem 1IT.14 related the nonlinearity measure of a

noalinear plant and that of a fccdﬁack sy.tem including such a plant;

sections 1IT.4 and III.5 briefly recviewed the use of feedback to achieve
asymptotic tracking and disturbance rejection, and to stabilize unstable
plants, while references are given for more detailed discussion. These

results showed precisely how to achieve desensitization, disturbance attenua-

tion, linearizing, asymptotic tracking and disturbance rejection by ferdback

in nonlinear systems.

The benefits of fecdback do not come without limitations or tradeoffs
as propositions III.2-IIL.5 showed: proposition ITI1,2 showed the relation
between desensitization and fecdback structure; proposition IIL.3 showed the
tradeoff between the sensitivities of a nonlinear, feedback system with
respect to the perturbations on the plant and on the feedback map; proposi-
tion III.4 showed that stability requirements restrict the achievable desen-
sitization effect by ‘feedbiick; proposition ITI.5 showed the tradeoff between
the output disturbance attenuation and the feedback-path disturbance attenua-
tioh. Note -that, due to the lack of appropriate language and tools, we did
not discuss the ‘tradeoff between the gain and bandwidth. Consequently, we
did ot explore the limitations on the benefits achievable by feedb;ck
imposed by the plant with fixeéd gain and and bandwidth (in the contéxt of

the Bode design method [45], the gain-bandwidth of a given active device

imposes an upper bound on the return difference over a specified bandwidth).,
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Also note that we bhave only treated determinlstic systems, i.c¢. no stochas-

tic models were introduced for noise, perturbations, element vaviations,

etc. Thus, in particular, we did not mention the well-known limitation on

compensator gain caused by noise.

In clarifying the features of nonlinear systems that are required for

fecedback to be advantageous, this paper will help engineers obtain better

understanding of nonlinear, feedback systems.
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. APPENDIX

Proof of Theorem IT.2:

Note that

. H o := GK(I+FGK)_1

~yr ~ar e memea

b = F_lFGK(I+FGK)_l (since F is invertible)
= FLFGRL (1+(FGK) 1) (FGK) 1™ (since FGK is invertible)
v - —1.-
| = 7 re(rok) ! (A.1)
: . , -1.-1
To estimate Hyrr for r Eiﬁd o e consider first z := [I+(FGK) 7] "r.
To obtain for any T €T, zq, note that r = [I+(FGK)_l]z, hence
b 2y = rT-(FGK)—lzT. Now the Lipschitz constant [13, p. 63] of the right
hand side, over A/ (kd e), is ?T[(Egg)-l] < 1. By assumption (a3), the
?‘ successive approximations starting with Zp = ¥ remain in.A/(Rd e) forever;
" b4
i
] since the contraction constant is < 1, we have that
.3
! % 3 -
¥ 3 -—
i |sa0 el
E - |Z"'I‘|T f_ . 3 (A. 2)
% 1 l“YT[(ESE) ']
|
S Thus, for each T €J,
s &
3 ~1 g el -1
A |§yrr Flelp = [F Ge-e)-F x|,
] — - - -
. g = |r Lireqror) ) " Le-r 1r|T
% 5_A(F—l)I[I+(FGK)"1]_lr-;|T (by assumption (1))
; -~ ~ ~ s ny
K L, a0y
¥ < AEF e (by (A.2))
i T Y, LFK) T
j
4 In particular, if eqns. (I1.10) and (II.11) hold, i.e. for T € & sufficiently
i A large,
47~




e

e e, Ao Wt e O . il vy it bt

.I(FGK)"lrl o =X and ‘7T[(FGK)_1] <1,

then for T €Y sufficiently large,

..l IF—lr‘T _1
E R e P e sl £ I Eer . Q.E.D.
wE- -7 [Ee) ) T ’
Proof of Theorem II,3:
Since F is invertible, we have, from Fig. 1.1,
- )
y B r )
Hence, for T €Y sufficiently large, ¥r € ﬁd e’
9y
-1 el -1
|ljyrr§ rlp = [F 7 (r-e)-F x|,
< )\(F—l)|e|T {by assumption (i))
= @ H oo e |
<< |F.'lr:|T {by assumption (ii)) Q.E.D.
Proof of Corollary II.3.1:
ijrr—}.:‘—lr = E‘—l(r—e) - g‘-lr = - E—le (since g‘—l is linear)

= - P (e

= - L@

= - [FEem )™

=- (e r e

Hence for T € U sufficiently large,

(since F is linear)
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o
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s

Iy, m = F el = s

o
F'r T (by assumption)

Q.E.D.

Proof of Corollary II1.3.2:

Consider the system S in the sinusoidal steady state (since the
clogsed-loop system is exp. stable by assumption (a2)) with input
reexp(jwt) and error erexp(jwt), where r, e € Cn. Then, by linearity

of F(jw),

o = F(jw) " (r-e) = ¥(jw) Fr - F(jw) e

Thus

i

Hyr(ju))r - F(jw)"lr —F(jw)—le

“F(jw) " (T+FGR) () 1 "t

- [ (I+FGK) F) (jw)-lr

~[F(j0) (T+GKF) (Ju) ) L

(by linearity of F(ju))

it

~[(T46KF) (Ju) } "2 () Lo

Hence
Iuyr(jw)r—l-‘(jm)"]'rl = | [ (I+GKF) (Jm)]'ll«"(jm)’ld

<< |F(jm)~1r| (by assumption (II.21)) Q.E.D.

Proof of Theorem IIX.l:

t= 1 -H
~yrY ~yr yr

= GR(T+FGK) T - Gr (14¥0K) "

~r A ey L Y

49~
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T ey

oo

= éK(I+F§K)'1-5K(I+FGK)"1-+6K(I+ch)" -GK(I+FGK)

~ e P e L e Y L

L

= GK(I+FCK)~ -Gk([+1CK) [[ FAG K(I+FGK)

~aw A Ao ~  meeses O

+ AG’K(I+FGK) (since F is lincar)

P . T SV

Evaluating eqn. (A.3) at r C k;, we have

LH
~y

where

[al

Since, by assumption, ﬁy = GR{THGK) ™

(o) = SK(THFOK) N BR(T+5GK) " (r+Ar) + AH

~y
"0

-1

+Ar = [I—F AG K (L+FGK) ™ J (v)

~ e A A

~a N Ay

-1,-1

]

r(r)

~an e A,

AHyr(r) by the Taylor's expansion theorem [19, p. 190] and obtain

AH
~y

r(r)

s A

-..yo

- D(EK)-[L+F-D(EK)]‘1~Arda~+AH (r)
0 ~n A w e ne ~y0r

1
s D[GK(I+FGK) ](r+aAr)°Arda-+AH r(r)
O -

where the Fréchet derivative D(CK) is evaluated at (I+FGK)~

~ asauns

Note

Ar

1]

Thus eqn.,

that eqn. (A.5) implies that

{[I—F»AG-K(I+FEK)'1]"1-I}(r)

FeAG* K (I+FCK) [I—P AG* K (I+FGK) l]'1(r)

~ N e ~ A m mpasen

F AG K'(I+FLK) ( )

~ nraemg

FeAH (1)
~ YT

(A.6) becomes

1
= - o . . e —]' o e
bH, () J D(GK) *[T+E-D(CK)] "+F+8H | (r)do +2H

0 - T

r(r)

(r+aAr).

(A4.3)

(A.4)

(A.5)

1. A
is a ¢ map, we can evaluate

(A.6)




Feaiiadiakd -Gt el e g
31 <

oo ot e = -

.
SN

-

R TIT

it i it

b

Rease e

ner B < o

ST
R

4

AR

3

1
if D(GK) F[ 1+D(CK) *F) Fdoet_ _(r) +0H
o v T o Yo"

(since f is 1

1 . ~ -
S {T-D(EK) *PLT+D (EK) +F) ™) daue At ()

0 ~ e - o~ ~a -~ ~y0
! ~ -1

[I+D(CK) *F]  dodH  (x)
0o~ ~Y ot

(A.7) is true, ¥r & Ro’ thus eqn. (IT1.4) follows.

Proof of Proposition TIT.2:

Note that

GK(I+FGK)- (1+@xr) cx (since GK is linear)

B Y -~ s

and that

GK (I+F2GK ) k [£+F GK (I+F2Gh ) k ]

~y0

r(r)

inear)

(A.7)

Q.E.D.

= GK (I+T GK ) [1+h F GK (I+F 6K,)~ ] lK (since K, is linear)

~1~1~~ ~2x2
= GK [1+(F2+K1P])b ]

~1
= [I46K, (P K T ﬂ Ck K
Thus eqn. (IIL.10) follows from eqn. (111.9).

Proof of Proposition III.3:

M i= GR(I4+FOK) L - K (14FGR)

~yTr e e o

-1

i

SR (T45CK) "t [1+0E GK(I+FbK) 1

VR I TV ~ mem  m ~n o asevas

Evaluating eqn. (A.8) at r € Re’ we -have

M r = CK(T+FGK) <r+Ar) - SR (S0 "L ()

~YT P P o~ von

where

~ Cr(T+FGR) T

(since GK, is linear)

Q.E.D.

(A.8)

(A.9)

P ]
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r+Ar := [I+AF GK(I+FGK) ] (A.10)

~ A A easAs

Since, by assumption (a3), GK(I+FGk) is a CL map, we can evaluate

~a e sy

AHyrr by the Taylor's expansion theorem and obtain

1
AHyrr = S D(GK)'[§+F'D(§K)]-lda-Ar (a.11)

' 0

wvhere the Fréchet derivative D(CGK) is evaluated at (;+§§g)_l(r+aAr), and

DF = F since F is linedr.

~

Note that eqn. {A.10) implies that

: b = ([T GK(1480K) ™1y e
i = ~0F-R(I+FGK) T LR -GR (1468K) 1 e
i = -AF-GR(THCK)
. = -AFH x
| -
. t Thus eqn. (A.1ll) becomes
i 1
f o= SD(GK) [I+F+D(CK) )™ da-AF'ﬁyrr (since F is linear) (A.12)
| ~
i
R = S D(GK) [I+F D(GK)] qu' l-AFoﬂyrr (since F is invertible)
Py U ~
i . .
i;? = 5 D(GK)F [I+D(GK) F] dq*F—l°AF'ﬁyrr (since F is linear)
‘ ) ~e ~ o~ ~
| R a1 s ,
: = { [T+D(CK) *F] “do-1}+F “+AF+H_r
) 0 ~ ~ ~ ~ ~ 'yyr
ive.
i

1
~ -1 I
; Ai‘yr = f{sotzﬂ)(gpg] da—g}og «AF*H _, on @e

Since ﬁ&r is inyertible, we have

P
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. . - 1 - _ ~
AN -t 1 {S [14+D(CK)TF ] Lin-1}-v Loar , on 9 Q.E.D.
£ . ~YY o Wyr 0 ~ PASAE ~ o~ ~ e

Proof of Proposition [11.4:

ié ' For completeness, we f{irst state an algorithm [36] which determines

: 5. the asymptotic behavior of the zeros of a polynomial. This algorithm is

2w,

, ! a direct application of the Newton's diagram (or known as the method of

: s Puiseux, see e.p. [35, p. 105]).
: i
5
] Algorithm:
* ; Data: Polynomial P(s,k) = ;?;ag(k)sQ 2 R[s]
| § where, for £ = 0,1,2,...,n
é m
{ a,(k) = a6,k , ko 'sE€R
: 5 L1 7 Ty
! =0
| % @ #0 , and . #0, ¥0 < %< n-1 such that my > 0
& n L
‘ i
i’ ; Step 1: Find { €N, and Tp, qp € Q, 0<p< i,where i, Tp's, qp's are
oo such that
[ o
i (i) 1 is the largest integer such that 0 = To < T < eee € Ty
i (ii) q, = max{mo,ml,...,mn};
! (iii) for 0 < p < i,
i
H
: 1 m, < q ~-%°71 ¥0 < 2 <n
. p=dp o W22
“F i with equality holds for at least two %'s;
| _
; ’ (iv) 1if &p (Qp) is the smallest (largest) £ such that my = qp—l'Tp, then
P -
% .. =2, for p=0,1,...,i~1. (The dure of finding i, T 's, q_'s
% 2 L) p’ rp i (The procedure o nding i, p qp
;; } can be best illustrvated graphically by the modified Newton's diagram
f ﬁ§ shown on Fig. A.l.)
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Step 2: For each 0 < p < i, form the polynomial

¢,(2) = (A.13)

Xy 2
PELLIRT +m = )
{e] R qu}

Step 3: Calculate the zeros of ¢0 and denote them by sz’ j = l,2,...,n0.
Calculate the nonzero zeros of ¢p, L <p <i, and denote them by z

pi’

j = l,2,...,np.

Step 4: As lkl + o, the n zeros of the polynomial P(s,k) behaves as

z kp’ j=l,2’~"anp9 P=0,l,2,-..,1.

where n > 1, for L < p < i, and no=n
P - - p= p

Now we can apply this algorithe: to prove Proposition III.4, Without

loss of generality, we only have to prove the case where n, =0y and

M= In « Note that

0

det [ I+kG]

1 + kftrace G(s)]
2 ,
+ k7[L principal minors of G(s) of order 2)

+ et + K" det G

gt 0d,, *k (1d; P ++K"M ] d,, +det G]
“dijij” g " 1,3 1

—[ 04y

| ] +ka1(s) +k2a2(s) oo +kmam(5)]

ﬂ d
1,4 H i

where aj(s) €R[s], § = 1,2,...,m.

Let B[iﬂjdij] = n. Since, by assumption, Z)dij-anij >3, ¥,j=1L12,...,m,
we have that B[Gj(s)] < n-3j, +=1,2,...,m. Hence with i defined in




Step 1 of the algorithm above,

- _.n -8 .
| ¢i(z) = 2 -&alaz + , B >3,

where ¢i(z) is defined in (A.13).

(4]

Now we claim that wi(z) has C+—zcros. To see this, consider some

' € > 0 sufficiently small; apply the Routh test (see e.g. [37]) to the
polynomial ¢i(z+e). Since B > 3, the first column from the left in the

Routh array contains some strictly negative numbers, thus ¢i(z) has some
T

o

C+—zeros. Hence as k -+ «, det [I+kG] has zero behaves as Zik i with

€ ¢, and 0
zi - an Ti > 0. Q.E.D.

R v

Proof of Proposition III.5:

(i) By definition, Gu := Gu+d Then, by eqn. (111.4) (of Theorem IIIL.1),

0.
we have that

1

3 oN o?‘]' . =
. Ay Aﬂyr(r) : SO[E+D(EE) F] “da dg (since Agyor(r) dO)
¥
;. 1 .
: = s [1+D(GK)-F]'lda-d0 (since D(GK) = D(GK))
0~ - bl bl

where the Fréchet derivative D(GK) is evaluated at (I+F5K)_l(r+aAr) with

~ Avasas

Ar = g-Agyor(r) = g-do.
>

{(11) By definition, Fy := F(df+§) = Fd_ +Fy (since F is linear). Then

, .,,
TINRGh A A T b T et

BBy = (F- 1§ = Fed, (A.14)
i; thus, following the proof of Proposition III.3, in particular, eqn. (A.12)

we have that

i 1
29 Ay = is D(GK)[I+F-D(GK)]~1da'AE-§ (since D(ég) = D(GK))
- ) . 0 hadad N e o~ -~
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1
—5 D(GK)[HF-D(GK)]'lea-df (by eqn. (A.14))
0 e L

1
= -j D(G&)-F[Iw(cx)-ﬂ*lda-dr (since ¥ is Linear)
0 o ma RN :

1 0
= {f [1+D(GK) *F]}™ “do-1}+dg
0 ~ A dad ~e ~

where the Fréchet derivative D(Gk) is evaluated at (I+FCk) (r+aAr) with

~ A

Ar = —AF'ﬁyrr = -AFey = -Fd, and « G [0,1]. Q.E.D.

Proof of Proposition I1I.6:

By definition, Gu := G(G+dg). Taen by eqn. (ITI.4) (of Theorem III.1)

we have that

y = s [I+D(5K)°F]—lda'[G(u+dg)—G(u)]
0~ = ~ -

(since AHy r(r) = C(u+dg)—G(u), where u k(I+FGK) )
~Yq - ~

~ e

1 1
= gs [1+D(6K)-F]”1da}o§§ DG (u+Rd )dB}-d
o~ - o~ & 8

where the Fréchet derivative D(Gk) is evaluated at (I+FGk) (r+aAt) with

s o

Ar = F[G(u+dg)-G(u)], u 1= K(I+FCK) r, and 0 € [0,1]. Q.E.D,

Proof of Proposition III.9:

6 (Nzﬂf) = inf sup |N u- Lul
&L &Y

inf sup |N utl, u- Lu[
LS ey

inf sup |N u—L u|
L'& &V 7

i}

1]

> A -

X,

[ URIRE————

rsnip

r'*w#b

=:6Tm D, VTEﬂ,VWCQ%. Q.E.D.
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Proof of Proposition I11.10:

]

inf sup ‘ Nu-Lu | )

S (N, ) ¢
T~ 162 Y

oty g e S

A

inf sup |Nu—Lui,r (since 'Zfl C '?/2 C ’Zlé)
=L uﬁ?fz .

S

=1 xS,l_(N,’L/Z) . ¥ ey . Q.E.D.

Proof of Proposition TTL.11:

Note that DN(0) € &L, lence

0 < 8, (N,B,(038)) < _sup  [Nu-DN(O)ul, (A.15)
~ u€B..(0;8) -

o e S et i TS e b b B

By the definition of Fréchet derivative, we know that for any € > 0,
38 > 0 such that |Nu~-DN(O)'u|T < eIuIT, Vlul,r < §. Hence as B+ 0,
the right-hand side of eqn. (A.l5) tends to zero and § (N,ﬁT(O;B)) > 0.

Q‘E.D.

. h e s e —— S o L %

Proof of Proposition TILI.12:

e

;2 - Let ¥ C 02{: 10, for some L € £, Nu = Lu, ¥u €] then L is a minimizer of
e sup |Nu-Lu|,, VT €T, and §_(N,¥) = 0, ¥T €J. 1In particular, if NEL,
i“.: UEV ~ ~ T T -~ ~
¥ then N is a minimizer of sup |Nu—Lu| L, YT EY, W CUL, hence §,_ (N) = 0,
{ % ~ ~ ~ 1 e T ~
' g dEV
o VT EY, vwC ue. Q.E.D,
P
e Proof of Proposition II11.13:
1 By assumption, for some T &€,
"r {ST(N,‘U) := inf sup |Nu—Lu|T =0 (A.16)
% ~ EeLer ~ "
% Thus for this T, :there exists a sequence (Li) 150 C X suck that
. 24/ 4=
. §;sf
i sup INu—Liu}‘T +0, as 1 » (A.17)
&y 77

-57~




or equivalently, for any 81 > 0, there exists my > 0 such that

sup |Nu-L ul <& , ¥i >n (A.18)
Ey - ~17'T 1 1

Now for any £ > 0, if we let el = g% and choose the corresponding mp >0

sucn that (A.18) holds, then

|L -—L.|T = % sup |L-““EjU'T (by definition of the induced norm,
~b~d |u|T=B ~1 with 8 defined in assumption (a3))
< = sup ]Liu-—Lju|T (by assumption (a3))
ey T T

A
—
142]
o

|Nu-L u|, +sup |Nu-L ul, )
""”lTuE’l/“'"jT

iA
™l W~ )
he

.
N
oM

—

=€, W¥i,j> my (by (A.18) and the choice of ml)

[ee]
o] »
Thus (Ei)i=0 is a Cauchy sequence in (£T£’| |T).
Note that for each T €2, (PTx,|-|T) is a Banach space with the
usual induced norm since, by assumption (al), PT%% is a Banach space.

Hence there exists L* € ¢ such that

Py — PyL" (A.19)

Note

ool < IBurLyuly + |Lguttly

A

sup |Nu-L u|_ + sup |L, u-L*u]
&y ~ ~1 T R

N

sup |[Nu-L ul. + [L,-L¥| *sup |u] vi (A.20)
\.qu ~ ~1'T ~1 «~ T LE/I/ T

By (A.18), (A.19) and the assumption (a2) that sup |u|T < «, the right-
Er
hand side of eqn. (A.20) tends to zero as i + ». Hence INu—L*u[T = 0,

VWaEV, Q.E.D.

.RQ.
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Proof of Theorem 1II.14:

Let LC‘ be a linear, causal operator such that the linear operator
~r

..~~~~~.

Lyr := L K(I+FL K} -1 ts well defined and causal. Then

r-L r= gK(1+§gK) r - L h(I+FL K)
o = GR(I+EGR) Tt - L K(HEGR) T

o , oL -1
T + LR(IHFCK) v - LR(I+FLK) T r
= (Q—L‘)u

+ L h(1+1L K) [([+FL h) - (I+FGK)](I+FGK)

~~~~~~

'1

! (since ¥, IJ(,, K are linear and u = !5(1_[+E§L()~lr)

= (C L )u + 1, K(l+}‘l. K) F(I:G-Q)IS(Z-P{*‘QES)-lr, (since F is linear)

= (g-—l:,)u - L K([+l‘L ol F(G L )u (since F,L

—-~.-.~.--

G’K are linear)
= (I~ ~L KF (I+L K“) ](g-—I:C)u, (since Fis linear)

= (I+PG¥F) (g-LG)u (A.21)

Thus

it

-1
(L&D T (G-Lul

| (ELED ™ (GLoul,
) [(6-L)u],, |<9‘§G)u|T (A.22)

provided that IZT(Q—I: Ju # 0.

TP it e e T R M T < e

* *
On letting I‘yr o= L K(1+FL l\) , where L‘G is defined in eqn. (III.25),

~~~~~~

we have, from eqn. (A.22)

I

ot o it oy ke
NI

S (H LR ) :=inf sup |U r - Lr]
! T'~yr’'d.e L‘-‘( € . ~yT T
CF
b
bp %
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~ *
where 9 := <§—I~‘C)Q{d,e and p is defined in eqn. (ITL.27). Note the last

inequality follows since when r © Qd o the correspending
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FIGURE CAPTTONS

Fig., I.1: Nonlinear, feedback system S under consideration.

Fig. T1.1: An example realizing a nonlinear input-output map using
nonlinear feedback and a large forward-path gain: the

: logarithmic amplifier.

. Fig. 11.2: A nonlincar, single-input, single-output, dynamical system

1 : illustrating the gencralized Black result,

Fig. II.3: Characteristics of the nonlinearity ¢(+) in the nonlinear,

feedback system shown in Fig. II1.2.

e

Fig. 1I.4: System outputs of the nonlinear, feedback system shown in

Fig. 11.2 when the system input is r(t) = sin 10t and the

N e

4 compensator gain is k = 1, 10, 20 and 40, respectively.

Fig. I1.5: Error signals of the nonlinear, feedback system shown in
Fig. 11.2, when the system input is r(t) = sin 10t and the
compensator gains are k = 10, 20 and 40, respectively.

Fig. I1.6: The input to the nonlinearity ¢(+) of the nonlinear, feedback
system shown in Fig. J11.,2, when the system input is

r(t) = sin L0t and the compensator gains are k = 1, 10, 20

and 40, respectively.

Fig. I¥.7: A nonlinear, multi-input, multi-output, dynamical system

T MY T T O B RN S SRR T D ! S T

illustrating the generalized Black result,

Fig, 11.8: Characteristics of the odd function v(+).

A Fig. I1.9: Characteristics of 1+0.2 tanhx, x > 0.

I Fig. II.10: System output yl(°) of the nonlinear, feedback system shown

§§ R in Fig. IT.7 when the system inputs are rl(t) = sin 10t,

rz(t) = (0.8 sin 15t and the compensator gaims are k = 1, 10,

: 4 20 and 40, respectively.

-61-




fig. II.11: System output y2(°) of the nonlinear, feedback system shown
in Fig. I1.7 when the system inputs are rl(t) = sin 10t,
rz(t) = 0.8sin 15t and the compensator gains are k = 1, 10,
20 and 40, respectively.
; Fig. I11.12: Error signal e1(°) of the nonlinear, f{eedback system shown

i in Fig., I1.7 when the system inputs are rl(t) = sin 10t,

rz(t) = 0,8 sin 15t and the compensator gains are k = 10, 20,
and 40, respectively,

Fig. I1.13: Error signal e2(°) of the nonlincar, feedback system shown

in Fig. II.7 when the system inputs are rl(t) = sin 10t,
rz(t) = 0.8 sinl5t and the compensator gains are k = 10, 20
and 40, respuectively.

Fig. I1,14: One period of the steady state trajectory of the system

e 1 WSt R W i+

output y(*) of the nonlinear, feedback system shown in

N | Fig. IL.7 when r (1) = sin 10t, r(t) = 0.8sin15¢ and k = 40.
\ Fig. TI.15: One peried of the steady state trajectory of the input to

! the nonlinearity ¢(*) of the nonlinear, feedback system

shown in Fig. IL.7 when rl(t) = gin 10t, r?(t) = 0,8 sin 15t

P and k = 40,

Fig. III.1: A comparison open-loop system for (comparative) sensitivity

analysis.

.

Fig. IXI.2: The perturbed closed-loop system: the plant G becomes G.

Fig. IIL1.3: The perturbed open-loop system: the plant G becomes 5,

the precompensator 50 remains unchanged.,

',? ) Fig. ILI.4: The nonlinear, multi~leoop feedback system for studying the
; ] relatlon between desensitization and feedback structure,
Fig. IIL.5: Nonlinear, feedback system $ subjected to additive external

distwrbances.
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111.6:

111.7:

Fig. I11I.8:

TFig.

A.l:

Characterizations of the nonlinear plant 9 and its best
linear approximation E* (in broken lines).
Characterizations of the closed~loop system gyr and its best
linear approximation (in broken lines).
Outputs of the nonlinear plant E, Yo and’the ciosed-loop
system !yr’ y, when the plant input u(t) = 1.2 sinwt and the
closed-loop system input r(t) = 0.92 sinwt.
Modified Newton's diagram for finding the parameters i,
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FOOTNOTES

(1)

In describing the feedback system under consideration, we adopted the
control terminology, i.e. the power stage of the amplifier is called
the plant; the preamplifier is called the compensator; etc. We trust

that this will cause no great inconvenience to fcedback amplifier
enthusiasts.

(2)

In the single-input single-output, linear, time-invariant case,
8 = Bu; however, if any onec of these three conditions fails, one
must write Bp. We do so to be self-consisterit.

(B)An operator N is continuous on an extended spaced{ iff ¥T €7, PTN
is continuous. -

(4)1f A€t n, the largest singular value of A is the square root of the
largest eigenvalue of A*A, where A* denotes the complex congugate of
A; it is also the Ly induced norm of the linear map A: ¢" = c".

(S)Note that for any physical system, [I+é(jw)K(ju)F(jw)]—l + I as

|o] + ». Hence it is impossible to fulfill this requirement for all
w ER.

(6)

Recall that if for some (4i,j), nij(s) 2 0, then 9n,,: = -o,
)]

13

The results of t¢his section were obtained with the collaboration of
A. N. Payne.

( )A function y(+): Iq_-*l( is said to be asymptotically T-periodic 1iff

y(+) = yp(+)4yo(+), where yq(-) is a T-periodic function and y_(t)
tends to 0, as t =+,

(Q)N € N is said to be Fréchet differentiable at x iff ¥T €T, PTN is
Frechet differentiable at x.

(lO)E‘ €d is said to be continuous iff ¥T €F, P,L is continuous, i.e.
L
~ T
¥T €75 |Ll,i= sup < o,
T vEZ, [uly
lu IT#o/
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